“入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。
另 外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习A的经验可以帮助你学习B。因此,你不需要 学习怎么样“入门”,因为这样的“入门”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然, 你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python 😀
看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。
先长话短说summarize一下:
你需要学习
- 基本的爬虫工作原理
- 基本的http抓取工具,scrapy
- Bloom Filter: Bloom Filters by Example
- 如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https://github.com/nvie/rq
- rq和Scrapy的结合:darkrho/scrapy-redis · GitHub
- 后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)
以下是短话长说:
说说当初写的一个集群爬下整个豆瓣的经验吧。
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突 然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你 已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue initial_page = "http://www.renminribao.com" url_queue = Queue.Queue() seen = set() seen.insert(initial_page) url_queue.put(initial_page) while(True): #一直进行直到海枯石烂 if url_queue.size()>0: current_url = url_queue.get() #拿出队例中第一个的url store(current_url) #把这个url代表的网页存储好 for next_url in extract_urls(current_url): #提取把这个url里链向的url if next_url not in seen: seen.put(next_url) url_queue.put(next_url) else: break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问 题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要 遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使 用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可 惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告 诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好, 现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速 度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了…
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我 们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能 把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向 master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是 O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py current_url = request_from_master() to_send = [] for next_url in extract_urls(current_url): to_send.append(next_url) store(current_url); send_to_master(to_send) #master.py distributed_queue = DistributedQueue() bf = BloomFilter() initial_pages = "www.renmingribao.com" while(True): if request == 'GET': if distributed_queue.size()>0: send(distributed_queue.get()) else: break elif request == 'POST': bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
- 有效地存储(数据库应该怎样安排)
- 有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
- 有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛…
- 及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
—————————————————————————————————————-
以前写过一篇使用python爬虫抓站的一些技巧总结,总结了诸多爬虫使用的方法;那篇东东现在看来还是挺有用的,但是当时很菜(现在也菜,但是比那时进步了不少),很多东西都不是很优,属于”只是能用”这么个层次。这篇进阶篇打算把“能用”提升到“用得省事省心”这个层次。
一、gzip/deflate支持
现在的网页普遍支持gzip压缩,这往往可以解决大量传输时间,以VeryCD的主页为例,未压缩版本247K,压缩了以后45K,为原来的1/5。这就意味着抓取速度会快5倍。
然而python的urllib/urllib2默认都不支持压缩,要返回压缩格式,必须在request的header里面写明’accept- encoding’,然后读取response后更要检查header查看是否有’content-encoding’一项来判断是否需要解码,很繁琐琐 碎。如何让urllib2自动支持gzip, defalte呢?
其实可以继承BaseHanlder类,然后build_opener的方式来处理:
import urllib2 from gzip import GzipFile from StringIO import StringIO class ContentEncodingProcessor(urllib2.BaseHandler): """A handler to add gzip capabilities to urllib2 requests """ # add headers to requests def http_request(self, req): req.add_header("Accept-Encoding", "gzip, deflate") return req # decode def http_response(self, req, resp): old_resp = resp # gzip if resp.headers.get("content-encoding") == "gzip": gz = GzipFile( fileobj=StringIO(resp.read()), mode="r" ) resp = urllib2.addinfourl(gz, old_resp.headers, old_resp.url, old_resp.code) resp.msg = old_resp.msg # deflate if resp.headers.get("content-encoding") == "deflate": gz = StringIO( deflate(resp.read()) ) resp = urllib2.addinfourl(gz, old_resp.headers, old_resp.url, old_resp.code) # 'class to add info() and resp.msg = old_resp.msg return resp # deflate support import zlib def deflate(data): # zlib only provides the zlib compress format, not the deflate format; try: # so on top of all there's this workaround: return zlib.decompress(data, -zlib.MAX_WBITS) except zlib.error: return zlib.decompress(data)
然后就简单了,
encoding_support = ContentEncodingProcessor opener = urllib2.build_opener( encoding_support, urllib2.HTTPHandler ) #直接用opener打开网页,如果服务器支持gzip/defalte则自动解压缩 content = opener.open(url).read()
二、更方便地多线程
总结一文的确提及了一个简单的多线程模板,但是那个东东真正应用到程序里面去只会让程序变得支离破碎,不堪入目。在怎么更方便地进行多线程方面我也动了一番脑筋。先想想怎么进行多线程调用最方便呢?
1、用twisted进行异步I/O抓取
事实上更高效的抓取并非一定要用多线程,也可以使用异步I/O法:直接用twisted的getPage方法,然后分别加上异步I/O结束时的callback和errback方法即可。例如可以这么干:
from twisted.web.client import getPage from twisted.internet import reactor links = [ 'http://www.verycd.com/topics/%d/'%i for i in range(5420,5430) ] def parse_page(data,url): print len(data),url def fetch_error(error,url): print error.getErrorMessage(),url # 批量抓取链接 for url in links: getPage(url,timeout=5) \ .addCallback(parse_page,url) \ #成功则调用parse_page方法 .addErrback(fetch_error,url) #失败则调用fetch_error方法 reactor.callLater(5, reactor.stop) #5秒钟后通知reactor结束程序 reactor.run()
twisted人如其名,写的代码实在是太扭曲了,非正常人所能接受,虽然这个简单的例子看上去还好;每次写twisted的程序整个人都扭曲了,累得不得了,文档等于没有,必须得看源码才知道怎么整,唉不提了。
如果要支持gzip/deflate,甚至做一些登陆的扩展,就得为twisted写个新的HTTPClientFactory类诸如此类,我这眉头真是大皱,遂放弃。有毅力者请自行尝试。
这篇讲怎么用twisted来进行批量网址处理的文章不错,由浅入深,深入浅出,可以一看。
2、设计一个简单的多线程抓取类
还是觉得在urllib之类python“本土”的东东里面折腾起来更舒服。试想一下,如果有个Fetcher类,你可以这么调用
f = Fetcher(threads=10) #设定下载线程数为10 for url in urls: f.push(url) #把所有url推入下载队列 while f.taskleft(): #若还有未完成下载的线程 content = f.pop() #从下载完成队列中取出结果 do_with(content) # 处理content内容
这么个多线程调用简单明了,那么就这么设计吧,首先要有两个队列,用Queue搞定,多线程的基本架构也和“技巧总结”一文类似,push方法和pop方 法都比较好处理,都是直接用Queue的方法,taskleft则是如果有“正在运行的任务”或者”队列中的任务”则为是,也好办,于是代码如下:
import urllib2 from threading import Thread,Lock from Queue import Queue import time class Fetcher: def __init__(self,threads): self.opener = urllib2.build_opener(urllib2.HTTPHandler) self.lock = Lock() #线程锁 self.q_req = Queue() #任务队列 self.q_ans = Queue() #完成队列 self.threads = threads for i in range(threads): t = Thread(target=self.threadget) t.setDaemon(True) t.start() self.running = 0 def __del__(self): #解构时需等待两个队列完成 time.sleep(0.5) self.q_req.join() self.q_ans.join() def taskleft(self): return self.q_req.qsize()+self.q_ans.qsize()+self.running def push(self,req): self.q_req.put(req) def pop(self): return self.q_ans.get() def threadget(self): while True: req = self.q_req.get() with self.lock: #要保证该操作的原子性,进入critical area self.running += 1 try: ans = self.opener.open(req).read() except Exception, what: ans = '' print what self.q_ans.put((req,ans)) with self.lock: self.running -= 1 self.q_req.task_done() time.sleep(0.1) # don't spam if __name__ == "__main__": links = [ 'http://www.verycd.com/topics/%d/'%i for i in range(5420,5430) ] f = Fetcher(threads=10) for url in links: f.push(url) while f.taskleft(): url,content = f.pop() print url,len(content)
三、一些琐碎的经验
1、连接池:
opener.open和urllib2.urlopen一样,都会新建一个http请求。通常情况下这不是什么问题,因为线性环境下,一秒钟可能 也就新生成一个请求;然而在多线程环境下,每秒钟可以是几十上百个请求,这么干只要几分钟,正常的有理智的服务器一定会封禁你的。
然而在正常的html请求时,保持同时和服务器几十个连接又是很正常的一件事,所以完全可以手动维护一个HttpConnection的池,然后每次抓取时从连接池里面选连接进行连接即可。
这里有一个取巧的方法,就是利用squid做代理服务器来进行抓取,则squid会自动为你维护连接池,还附带数据缓存功能,而且squid本来就是我每个服务器上面必装的东东,何必再自找麻烦写连接池呢。
2、设定线程的栈大小
栈大小的设定将非常显著地影响python的内存占用,python多线程不设置这个值会导致程序占用大量内存,这对openvz的vps来说非常致命。stack_size必须大于32768,实际上应该总要32768*2以上
from threading import stack_size stack_size(32768*16)
3、设置失败后自动重试
def get(self,req,retries=3): try: response = self.opener.open(req) data = response.read() except Exception , what: print what,req if retries>0: return self.get(req,retries-1) else: print 'GET Failed',req return '' return data
4、设置超时
import socket socket.setdefaulttimeout(10) #设置10秒后连接超时
5、登陆
登陆更加简化了,首先build_opener中要加入cookie支持,参考“总结”一文;如要登陆VeryCD,给Fetcher新增一个空方法login,并在__init__()中调用,然后继承Fetcher类并override login方法:
def login(self,username,password): import urllib data=urllib.urlencode({'username':username, 'password':password, 'continue':'http://www.verycd.com/', 'login_submit':u'登录'.encode('utf-8'), 'save_cookie':1,}) url = 'http://www.verycd.com/signin' self.opener.open(url,data).read()
于是在Fetcher初始化时便会自动登录VeryCD网站。
四、总结
如此,把上述所有小技巧都糅合起来就和我目前的私藏最终版的Fetcher类相差不远了,它支持多线程,gzip/deflate压缩,超时设置,自动重试,设置栈大小,自动登录等功能;代码简单,使用方便,性能也不俗,可谓居家旅行,杀人放火,咳咳,之必备工具。
之所以说和最终版差得不远,是因为最终版还有一个保留功能“马甲术”:多代理自动选择。看起来好像仅仅是一个random.choice的区别,其实包含了代理获取,代理验证,代理测速等诸多环节,这就是另一个故事了。
转自:http://obmem.info/?p=753
转载请注明:jinglingshu的博客 » Python 爬虫抓站的一些技巧总结